### **ANSWER-KEY**

## **Assignment 3**

MULTIPLE CHOICE QUESTION

- 1. (d) 10 Ω
- 2. (a) 500 rad/sec
- 3. (b) 0.16 amp
- 4. (b) R/ (R<sup>2</sup> + $\omega^2 L^2$ ) $\frac{1}{2}$
- 5. (a) 0.35 mH
- 6. (d) 400 W
- 7. (c) C
- 8. (d) d
- 9. (b) 40 V, 40 A

10. (b) 0.4 A

#### SHORT ANSWER TYPE I (2MARKS EACH)

11(i) As the current leads the voltage by  $\pi/4$ , the element used in black box is a capacitor.

ii) tan  $(\pi/4) = V_C/V_R$   $1 = V_C/V_R$  gives  $X_C = R$ 

Impedance  $Z = \sqrt{R^2 + Xc^2}$  Gives  $Z = \sqrt{2} R$ 

12. Here  $P_L = 60$  W,  $I_L = 0.54$  A .  $V_L = 60/0.54$  = 111.1 V

The transformer is step-down and have ½ input voltage. Hence  $I_P\!=\!1/2$   $I_L\!=\!0.27~A$ 

13. Frequency  $v=C/\lambda = 10^6$  Hz.

 $u^2 = 1/4\pi^2 \text{ LC}$  Gives L= 1.055x10<sup>8</sup> H

14.  $I_2 = E_2 / Z_2 = 0.1 A$ 

 $I_1 = E_2 \ I_2 / E_1 = 0.01 A. \ I_1 = E_2 I_2 / E_1 = 0.1 A$ 

#### SHORT ANSWER TYPE II (3MARKS EACH)

15. (i)R= V<sub>R</sub>/I = 30Ω Xc = Vc/I = 40Ω Z=  $\sqrt{R^2 + Xc^2}$  = 50Ω (ii) X<sub>L</sub> = Xc  $\omega$ L= 40 L= 40/2πf = 2/5π H. 16. Ans. (a) A

(b) Zero

(c) L or C or LC Series combination of L and C

## Long Questions (Each carry 5 marks)

17. Derivation same as Question B2

(i) Condition for No power loss is  $Pav = V_{rms}I_{rms} \cos \varphi$ 

 $\cos\varphi = 0$  i.e.  $\varphi = 90^{\circ}$  No resistor used in circuit.

(ii) For Maximum power loss  $X_C = X_L$  i.e. at resonance.  $\cos \phi = 1$  and power lost is maximum.

18.(b) Demand of electric power = 1200 kW

Distance of town from power station = 20 km

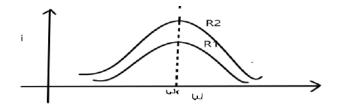
Two wire =  $20 \times 2 = 40$  km

Total resistance of line =  $40 \times 0.5 = 20 \Omega$ 

The town gets a power of 4000 volts Power = voltage  $\times$  current

$$I = \frac{1200 \times 10^4}{4000} = 1200/4 = 300 \text{ A}$$

The line power loss in the form of heat =  $I^2 \times R$ 


$$= (300)2 \times 20 = 9000 \times 20 = 1800 \text{ kW}$$

19.

 $\omega L = \frac{1}{\omega C}$   $\omega^2 = \frac{1}{LC}$   $2\pi u^2 = \frac{1}{LC}$  u = 39.80 Hz the frequency is called resonance frequency.

ii.Maximum current at resonance  $I_m^{max} = \frac{V_m}{R} = \frac{200}{100} = 2A$ 

iii.



R<sub>1</sub> is greater than R<sub>2</sub>

20. Ans  $N_s = \frac{V_s}{V_p} N_p = 300 turns$ 

# **CASE STUDY TYPE QUESTIONS (4 MARKS EACH)**

21. Answer1. Electromagnetic induction

Answer2. Plane of coil become parallel to magnetic field so  $\theta = 90$ ,  $sin\theta = 1$ 

Answer3. $\varepsilon_{max} = NBA \ \omega = 136V$ 

Answer4.  $I_{max} = \frac{\varepsilon_{max}}{R} = 11.3$